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ABSTRACT
Exposure to industrial, military, and other occupational noises can cause noise-induced hearing loss (NIHL), which 
poses significant health risks for workers but is also potentially preventable. Currently, there is no effective treatment 
for NIHL, as mammalian cochlear hair cells cannot regenerate once damaged. Therefore, preventing hair cell death or 
implementing early therapeutic intervention is essential for preserving hearing function. NIHL is a complex condition 
that results from multiple pathophysiological changes. Recent studies on cochlear cellular structures have revealed 
promising strategies for NIHL prevention through the development of protective pharmacological agents. Reduced 
cochlear blood flow, inflammation, and oxidative stress are recognized as key mechanisms contributing to NIHL, 
with oxidative stress playing a particularly critical role. This research aimed to investigate the link between oxidative 
stress and the onset of NIHL, as well as to explore the potential of endogenous and exogenous antioxidant defense 
mechanisms in its prevention.
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ABSTRACT 
Regarding significant number of the people affecting by factors, such as gas poisoning, microbial, and heat exhaustion 
in mineral hot spas, the present study was conducted aimed at providing a model for measuring and managing the risk 
of using hot mineral spas. In this research, a conceptual model of risk was prepared in four stages. Firstly, 16 qualitative 
parameters were extracted, their effect weight of which was obtained based on the amount of risk for users was 
determined by fuzzy analysis method. According to the amount and standard range allowed for each parameter, 
quantitative and qualitative risk categories were obtained in five ranges for each parameter based on the obtained 
weights and opinions of the health experts. Then, the final result regarding risk of using each spa was obtained by 
combining these parameters. For assessing risk of using hot mineral spas in Ardabil province by the method invented 
in this research, at first, water samples were collected from six spas in different parts of Ardabil province. Then, risk 
management of six spas was evaluated. According to the results, the Qotursuyi spa had a high level of risk, the spas 
of Shabil, Gavmishgoli, and Qinarjeh had a moderate level of risk. Under responsible risk management, natural hot 
springs present a renewable resource for sustainable tourism development on a long-term basis.  
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INTRODUCTION
The word noise originates from the Latin term nausea 
and refers to an unwanted, unpleasant, and unexpected 
sound. More specifically, noise can be described as 
an inappropriate sound occurring at the wrong place 
or time. It arises from various sources, including 
occupational, environmental, and recreational activities 
[1]. Globally, noise is recognized as one of the most 
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widespread environmental pollutants particularly in 
occupational settings and presents significant risks to 
both physical and mental health [2]. The biological 
effects of noise exposure are generally classified into 
two categories: auditory and non-auditory effects [3]. 
Non-auditory effects arise when noise acts as a stressor, 
triggering physiological and behavioral responses. 
Auditory effects result from repeated or prolonged 
noise exposure, which can damage the hair cells in the 
cochlea and lead to noise-induced hearing loss (NIHL) 
[4,5].
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Occupational noise-induced hearing loss (ONIHL) 
remains one of the most prevalent work-related 
illnesses globally [6]. Despite the implementation of 
national and international regulations and protective 
standards, its worldwide prevalence continues to be 
high [7]. According to the World Health Organization, 
occupational noise exposure accounts for approximately 
16% of adult hearing disabilities globally [8,9]. In the 
United States, nearly 22 million workers are exposed 
to hazardous noise levels annually, while in the United 
Kingdom, this figure is around 1.7 million. In China, 
more than 10 million workers are exposed to harmful 
noise levels, with a pooled ONIHL prevalence of 
21.3% [10]. In Iran, recent statistics indicate that two 
million workers are exposed to noise levels exceeding 
permissible occupational limits [11], and a recent 
meta-analysis reported a pooled ONIHL prevalence of 
34.69% [12]. However, there are currently no available 
data regarding the economic burden of ONIHL in Iran.
The economic burden of occupational noise-induced 
hearing loss (ONIHL) on society is substantial and 
continues to grow. For example, the annual financial 
cost attributed to hearing loss in the United States 
is estimated at approximately $242.2 million [13]. 
Beyond economic implications, ONIHL significantly 
diminishes quality of life, impairs functional capacity, 
and affects individuals’ social and occupational 
relationships [7,14]. The high prevalence of ONIHL 
reflects the widespread exposure to hazardous noise 
across various industries and workplaces.

Despite existing preventive regulations, there is 
currently no effective treatment for noise-induced 
hearing loss (NIHL), as cochlear hair cells in mammals 
cannot regenerate. However, recent research into the 
cellular and molecular mechanisms underlying NIHL 
has identified potential avenues for pharmaceutical 
prevention. This study aimed to review existing literature 
on NIHL and its pathophysiological mechanisms, with 
the goal of advancing our understanding of underlying 
biological processes and informing the development of 
novel therapeutic strategies.

A BRIEF REVIEW OF THE STRUCTURE OF 
THE EAR
The ear has three parts: outer, middle, and inner ears. 
The outer ear, the most external part, encompasses 
the auricle and the ear canal. The middle ear has three 
components: the tympanic cavity, eustachian tube, 
and mastoid cells. The tympanic cavity (the primary 
component of the middle ear) is a tiny chamber that is 
predominantly covered by the tympanic membrane and 

contains the ossicles (malleus, incus, and stapes) of the 
middle ear [15]. The inner ear is divided into two parts: 
the bony and membranous labyrinth. The membranous 
labyrinth is within the bony labyrinth and includes 
three sections: semicircular canals, utricle and saccule, 
and cochlea. The cochlea is a system of coiled tubes, 
forming a spiral of approximately 2.5 turns [16]. If the 
cochlea is uncoiled into a strip, one terminus is referred 
to as the base (near the oval and round windows), and the 
other terminus as the apex [17]. There are three canals 
within the cochlea: the vestibular canal, cochlear duct, 
and tympanic canal, which are separated by the basilar 
membrane and Reissner’s membrane. The vestibular 
and tympanic canals (outer canals) are filled with an 
incompressible fluid named perilymph, which has an 
ionic composition identical to that of the extracellular 
fluid. The cochlear duct (inner canal) is filled with 
endolymph, which has a composition similar to that of 
intracellular fluid (high K⁺ and low Na⁺ concentrations) 
[18]. The vestibular canal terminates in the oval 
window, whereas the tympanic canal terminates in the 
round window. The organ of Corti, which contains hair 
cells, nerve endings, and supporting cells, is located 
in the basilar membrane. Hair cells are organized into 
one row of inner hair cells and three to five rows of 
outer hair cells. The stereocilia on the inner hair cells 
follow a linear pattern, while those on the outer hair 
cells form patterns resembling the letters “V” or “W” 
[19]. The organ of Corti is covered by a gelatinous and 
fibrous structure called the tectorial membrane, which 
is anchored on one side to the limbus and connected 
to the tallest stereocilia of the outer hair cells on the 
other side. When the basilar membrane moves up and 
down, it creates a relative motion between the tectorial 
membrane and the organ of Corti, resulting in the 
deflection of hair cells [20].

MECHANISM OF NIHL
NIHL is a multifaceted auditory impairment resulting 
from the interaction of environmental and genetic 
elements, which determine an individual’s sensitivity to 
noise. Noise is the most significant environmental factor 
involved in NIHL [13]. While various theories have 
been proposed to explain NIHL, its exact pathogenesis 
remains incompletely understood [21]. Generally, 
noise can damage the inner ear through physical forces 
generated by sound waves or molecular alterations 
affecting inner ear cell or neuron function [22]. In other 
words, cochlear damage due to noise exposure reflects 
both mechanical and metabolic injuries. Mechanical 
damage directly affects the cellular and intracellular 
structures of the organ of Corti, while metabolic injury 
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results from disruptions to the processes vital for 
maintaining inner ear homeostasis [23].

Mechanical Damage
It is widely believed that mechanical damage to the 
cochlea is the primary pathological change associated 
with NIHL when noise intensity is exceptionally high. 
When high-level noise reaches the inner ear, it causes 
severe fluctuations in the endolymph and perilymph of 
the organ of Corti, resulting in extreme stretching and 
compression of the basilar and tectorial membranes. 
This can cause the stereocilia of inner and outer hair 
cells to detach from the tectorial membrane, making 
it difficult for hair cells to receive vibrational stimuli 
effectively. Additionally, the vibrations in the lymphatic 
fluids can separate hair cells from the basilar membrane, 
disrupting ribbon synapses. This disruption prevents the 
remaining synapses from maintaining optimal function, 
ultimately compromising the capability of hair cells to 
encode auditory signals [24].

Metabolic Injury
While mechanical injury leads to structural damage in 
cells, metabolic injury arises from a series of interrelated 
pathophysiological changes [25]. The cochlea depends 
on aerobic metabolism, requiring oxygen to generate 
energy for its cells [8]. This energy production occurs 
within the mitochondria via the electron transport 
chain, which involves a sequence of reactions where 
electrons are transferred between carriers to produce 
adenosine triphosphate (ATP), the energy source of 
cells [26]. During this process, superoxide anions 

) are generated as unwanted byproducts.

Exposure to high levels of noise forces mitochondria to 
generate large quantities of energy, leading to excessive 
production of  [25, 27]. These  then participate 
in subsequent reactions, producing harmful molecules 
such as hydrogen peroxide (H₂O₂), hydroxyl radicals 
(OH•), peroxynitrite (ONOO⁻), and hypochlorous acid 
(HOCl) [28]. The enzyme superoxide dismutase (SOD) 
facilitates the conversion of  into H₂O₂ and water 
[29]. 

The cochlea receives blood from two microvascular 
networks: the lateral wall and the spiral ganglion 
neurons [30]. Noise exposure increases the metabolic 
demands of cochlear cells and tissues, which require 
higher energy for ion pumping and homeostasis 
maintenance. This heightened metabolic activity boosts 
mitochondrial respiration [31]. In a majority of tissues, 
increased metabolism is accompanied by an increase 

in blood flow to deliver more oxygen to stressed cells. 
However, in the cochlea, exposure to high sound 
levels leads to a reduction in blood flow [32]. Reduced 
oxygen delivery (ischemia) disrupts mitochondrial 
phosphorylation and leads to higher production of 
. After ischemia, the restoring blood flow (reperfusion) 
can worsen the generation of  [33].

The ion balance, critical for normal hearing, is highly 
susceptible to disruption due to noise exposure. 
Excessive noise stimulation of hair cells causes 
abnormal ion flux through the ion channels in the cell 
membrane [25]. Calcium, a crucial ion for inner ear 
function, is usually present in low concentrations in 
hair cells and spiral ganglion neurons under normal 
conditions. However, in response to noise, calcium 
levels rise significantly, leading to the release of 
neurotransmitters from hair cells, which convert 
mechanical signals into electrical signals [34]. 
Excessive glutamate neurotransmitter release can 
result in excitotoxicity [25]. Excitotoxicity refers to the 
toxic effects of excitatory neurotransmitters, such as 
glutamate, wherein prolonged or excessive activation 
of glutamate receptors triggers a neurotoxic cascade, 
ultimately leading to neuronal dysfunction and cell 
death [35].

OXIDATIVE STRESS AND CELLULAR 
DAMAGE
Cell damage, dysfunction, or death can result from 
oxidative stress, which occurs when the balance between 
oxidants and antioxidants is disrupted. Under normal 
conditions, endogenous antioxidants provide sufficient 
protection against environmental oxidant attacks. 
However, continuous exposure to environmental 
oxidants, such as noise, hastens antioxidant depletion, 
shifting the balance toward insufficiency and oxidative 
stress [36].

As previously mentioned, excessive acoustic stimulation 
triggers metabolic shifts in the cochlea, including the 
generation of reactive oxygen species (ROS) such 
as , H₂O₂, and OH•. ROS are oxygen-derived 
molecules that either act as free radicals themselves or 
readily produce free radicals [37]. A free radical is an 
atom or molecule with one or more unpaired electrons 
in its outer orbital, making it highly reactive. Free 
radicals achieve stability by acquiring electrons from 
other molecules, thereby oxidizing them. In biological 
systems, this process damages cellular components 
(nucleic acids, proteins, and lipids), resulting in 
oxidative damage [38, 39]. Under normal physiological 
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conditions, ROS produced by mitochondria are 
neutralized by endogenous antioxidant mechanisms, 
maintaining inner ear homeostasis [34, 40]. The 
imbalance between ROS production and antioxidant 
defense mechanisms leads to a condition known as 
oxidative stress [41].

Lipid Peroxidation
The cell or organelle membrane is particularly 
susceptible to damage caused by ROS, a process 
known as lipid peroxidation [42]. Lipid peroxidation 
may be characterized as the oxidative degradation 
of lipids containing carbon–carbon double bonds. 
Since membranes form the foundation of organelles 
like mitochondria and the plasma membrane, lipid 
peroxidation severely compromises cell function and 
survival. By attacking unsaturated fatty acids in the 
phospholipid bilayers of biological membranes—which 
are essential for their critical property of fluidity—lipid 
peroxidation affects the biophysical characteristics of 
the membranes. It alters membrane properties such as 
fluidity and electrical resistance, limits protein mobility 
within the membrane, and deactivates ion pumps crucial 
for ionic homeostasis. Moreover, lipid peroxidation 
generates harmful intermediates, such as aldehydes 
(e.g., malondialdehyde), which function as bioactive 
molecules under physiological and pathological 
conditions. These compounds influence signal 
transduction, gene expression, and cell proliferation 
[43]. Lipid peroxidation is self-perpetuating and may 
contribute to sustained cellular damage even after noise 
exposure ends [33].

DNA Damage
Free radicals cause DNA alterations through various 
mechanisms, including base destruction; single- or 
double-strand breaks; purine and pyrimidine nucleotide 
modifications; mutations, deletions, and substitutions; 
and cross-linking with proteins [44].

Protein Damage
ROS can fragment peptide chains, alter protein charges, 
and oxidize specific amino acids, thereby damaging 
these macromolecules [45]

ANTIOXIDANT DEFENSE SYSTEM
The antioxidant defense systems of living organisms 
utilize diverse strategies based on antioxidant 
molecules to counteract the effects of free radicals and 
oxidative stress [28]. Antioxidants are reducing agents 
present both intracellularly and extracellularly that 
can react with free radical species and regulate their 

production. They constitute the body’s primary defense 
mechanism against free radicals, playing a crucial role 
in neutralizing them and maintaining the equilibrium 
between oxidation and reduction reactions [46].

Endogenous Antioxidants
An extensive network of intracellular and extracellular 
antioxidants operates with diverse functions in 
each defense area. Superoxide dismutases (SODs) 
represent the primary defense against ​ toxicity, 
catalyzing the conversion of  to   and 
, thereby limiting the availability of ​.

   is subsequently converted into water by 
catalase and glutathione peroxidase (GPx). However, 
in the presence of , ​ may produce hydroxyl 
radicals  via the Fenton reaction. Consequently, 
SOD activity may exhibit dual and opposing effects. 
Primarily, when coordinated with catalase and GPx, 
it functions as an antioxidant enzyme by neutralizing ​

​ to prevent its accumulation. Second, SOD may 
function as a pro-oxidant because excessive ​
can lead to ROS overproduction and cellular toxicity. 
Therefore, reduced SOD activity is associated with 
a significant risk of oxidative stress. It has been 
postulated that the antioxidant properties of SOD under 
various pathophysiological conditions are beneficial 
in protecting the immune system [47]. Mitochondrial 
SOD is an antioxidant enzyme that plays an essential 
protective role in preventing Noise-induced damage to 
the cochlea by reducing ROS levels [27]. The absence 
of this enzyme renders young mice susceptible to 
noise-induced hearing loss (NIHL) [48].

Exogenous Antioxidants
Since no effective treatment for NIHL has yet been 
identified, and mammalian cochlear hair cells lack 
regenerative capabilities, it is crucial to prevent hair cell 
death or intervene therapeutically in the early stages 
of NIHL to preserve hearing. Identifying antioxidants 
as potential preventive agents has emerged as a novel 
approach in neurodegenerative diseases, including 
NIHL. This concept is supported by studies on 
therapeutic strategies targeting excessive free radical 
production.

Observational studies have investigated the effects 
of various vitamins, minerals, and compounds—both 
individually and in combination including vitamins 
B₁₂, C, and E; magnesium; N-acetylcysteine (NAC); 
alpha-lipoic acid; zinc gluconate; gi; and beta-carotene 
[49–53]. Experimental research has also examined the 
protective effects of numerous antioxidant supplements 
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in preventing hearing loss in animal models, such as 
resveratrol [54]; vitamins E and C; magnesium [55]; 
ascorbic acid [56]; NAC [57]; statins [58]; myricetin 
[4]; vitamin E; ferulic acid; coenzyme Q₁₀ [8]; 
metformin [59]; caffeic acid [60]; rosmarinic acid [61]; 
pioglitazone [62]; Ginkgo biloba [63, 64]; quercetin 
[65]; D-methionine [66]; and other compounds. 
Previous reviews have explored the association 
between hearing loss and vitamins/antioxidants. Jung 
et al. found that deficiencies in nutritional factors 
(vitamins A, C, E, and zinc) led to increased hearing 
loss [67]. Furthermore, Abbasi et al. demonstrated that 
using vitamin B₁₂, folic acid, and NAC as antioxidants 
can prevent occupational noise-induced hearing loss 
(ONIHL) [68]. A meta-analysis investigating NAC’s 
therapeutic effects on sensorineural hearing loss 
revealed that NAC improved hearing test results in 
cases of sudden hearing loss but did not prevent NIHL 
[69].

Although the pathogenesis of NIHL has not been 
fully elucidated, the currently accepted mechanism 
suggests that noise-induced damage to the organ of 
Corti results from excessive production of reactive 
oxygen species (ROS) [70]. ROS are generated in the 
cochlea immediately following noise exposure [71], 
and their formation continues for up to two weeks 
post-exposure—peaking 7 to 10 days after exposure—
leading to prolonged responses and hair cell death [33, 
72]. Consequently, the use of antioxidants is expected 
to mitigate NIHL [68].

NOISE CHARACTERISTICS INFLUENCING 
NIHL
As previously mentioned, NIHL is a complex form 
of hearing loss arising from the combined effects of 
personal (genetic and acquired) and environmental 
factors [73]. Personal factors—including health-related 
behaviors (such as use of hearing protection, tobacco 
use, and alcohol intake) and health conditions (such 
as hypertension and hyperlipidemia)—may influence 
noise sensitivity [74, 75]. Environmental factors include 
noise, vibration, heat, chemicals (e.g., organic solvents, 
heavy metals), ototoxic drugs, infections, nutritional 
disorders, smoking, hypertension, cholesterol levels, 
and possibly pigments, all of which have been implicated 
in the development of NIHL [76]. Undoubtedly, noise 
is the most critical environmental factor involved in 
NIHL [13]. Noise-induced damage largely depends on 
its acoustic properties, including intensity, exposure 
duration, frequency content, and bandwidth. Frequency 
characteristics (e.g., intermittence, tonality, roughness, 

etc.) cause greater disturbance compared to steady-state 
noise of the same intensity [77]. Therefore, evaluating 
the adverse health effects of noise solely based on 
intensity is inadequate, as even low-level noise has 
been shown to cause pathophysiological effects that 
disrupt auditory function [78]

ADDITIONAL FACTORS INFLUENCING 
NIHL
Various other factors may contribute to the 
development of NIHL. Studies indicate that males 
are more susceptible to hearing loss than females, 
partly due to their higher representation in industrial 
occupations. Additionally, socioeconomic background 
and ethnicity also play roles in NIHL susceptibility 
[79, 80]. Some individuals exhibit a higher genetic 
predisposition to NIHL, reflecting diverse genetic 
backgrounds [81]. Smoking, coronary artery disease, 
diabetes, hypertension, high cholesterol, and exposure 
to vibration may exacerbate hearing damage following 
noise exposure [82, 83]. Moreover, combined exposure 
to chemicals and nanoparticles has been implicated in 
the development of NIHL [5, 84, 85].

CONCLUSION
Traditionally, the prevention of NIHL has relied on the 
use of hearing protection devices and the control of 
noise emission. However, increased understanding of 
the cellular and biochemical basis of NIHL has led to 
the development of new preventive strategies. Among 
these, given that the most widely accepted mechanism 
of NIHL involves the overproduction of reactive 
oxygen species (ROS) in the organ of Corti, the use of 
antioxidants to neutralize ROS and inhibit cell death 
appears to be the most rational approach.
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