Fumed Silica Particle Deagglomeration Associated with Instrument Techniques

  • Candace Su-Jung Tsai Colorado State University
  • Jared Khattak
  • Nara Shin
  • Wendell Rhine
  • George Gould
Keywords: fumed silica, deagglomeration, cyclone, real time instrument, sampling


Fumed silica is used in insulation products because of its thixotropic properties and low thermal conductivity. Exposures to crystalline silica are of most concern, but there is evidence that exposures to nanometer sized fumed silica may also lead to adverse health outcomes. Direct reading real time instruments are used to assess concentrations of airborne particles, they often contain an aerosol pre-separator-cyclone, which may cause measurement variation by dispersing agglomerated particles. The cyclone effect was determined by evaluating three instruments measuring airborne fumed silica as a case study. This result indicated that the measured nanoparticle concentrations of fumed silica increased with cyclone use, thus correction should be made for measuring fumed silica using cyclone attached instrument.


. Hartley, P. A.; Parfitt, G. D.; Pollack, L. B., The role of the van der Waals force in the agglomeration of powders containing submicron particles. Powder Technology 1985, 42, (1).

. Corn, M., The Adhesion of Solid Particles to Solid Surfaces, I. a Review. Journal of the Air Pollution Control Association 1961, 11, (11).

. Irfan, A.; Cauchi, M.; Edmands, W.; Gooderham, N.; Njuguna, J.; Zhu, H., Assessment of Temporal Dose-Toxicity Relationship of Fumed Silica Nanoparticle in Human Lung A549 Cells by Conventional Cytotoxicity and H-NMR-Based Extracellular Metabonomic Assays. Toxicological Sciences, 2014, 138, (2).

. Merkel, T. C.; Freeman, B. D.; Spontak, R. J.; He, Z.; Pinnau, I.; Meakin, P.; Hill, A. J., Ultrapermeable, Reverse-Selective Nanocomposite Membranes. Science 2002, 296, (5567).

. Raghavan, S.; Khan, S., Shear-Thickening Response of Fumed Silica Suspensions under Steady and Oscillatory Shear. Journal of Colloid and Interface Science 1997, 185, (1).

. Vitums, V. C.; Edwards, M. J.; Niles, N. R.; Borman, J. O.; Lowry, R. D., Pulmonary Fibrosis from Amorphous Silica Dust, A Product of Silica Vapor. Archives of Environmental and Occupational Health 1977, 32, (2).

. Sandberg, W.; Lag, M.; Holme, J.; Friede, B.; Maurizio, G.; Kruszewski, M.; Schwarze, P.; Skuland, T.; Refsnes, M., Comparison of non-crystalline silica nanoparticles in IL-1β release from macrophages. Particle and Fibre Toxicology 2012, 9, (32).

. Ren, L.; Zhang, J.; Zou, Y.; Zhang, L.; Wei, J.; Shi, Z.; Li, Y.; Guo, C.; Sun, Z.; Zhou, X., Silica nanoparticles induce reversible damage of spermatogenic cells via RIPK1 signal pathways in C57 mice. Int. J. Nanomedicine 2016, 24, (11).

. Sun, B.; Wang, X.; Liao, Y. P.; Ji, Z.; Chang, C. H.; Pokhrel, S.; Ku, J.; Liu, X.; Wang, M.; Dunphy, D. R.; Li, R.; Meng, H.; Madler, L.; Brinker, J.; Nel, A. E.; Xia, T., Repetitive Dosing of Fumed Silica Leads to Profibrogenic Effects through Unique Structure−Activity Relationships and Biopersistence in the Lung. ACSnano 2016, 10, (8).

. Kaewamatawong, T.; Kawamura, N.; Okajima, M.; Sawada, M.; Morita, T.; Shimada, A., Acute Pulmonary Toxicity Caused by Exposure to Colloidal Silica: Particle Size Dependent Pathological Changes in Mice. Toxicology Pathology 2005, 33, (7).

. Zhang, H.; Dunphy, D. R.; Jiang, X.; Meng, H.; Sun, B.; Tarn, D.; Xue, M.; Wang, X.; Lin, S.; Ji, Z.; Li, R.; Garcia, F. L.; Yang, J.; Kirk, M. L.; Xia, T.; Zink, J. I.; Nel, A.; Brinker, C. J., Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal versus pyrolytic. Journal of the American Chemical Society 2012, 134, (38).

. Yamada, M.; Takaya, M.; Ogura, I., Performance evaluation of newly developed portable aerosol sizers used for nanomaterial aerosol measurements. Industrial Health 2015, 53, (6).

. Kousaka, Y.; Okuamama, K.; Shimizu, A.; Yoshida, T., Dispersion Mechanism of Aggregate Particles in Air. Journal of Chemical Engineering of Japan 1979, 12, (2).

. Tsai, C.; Theisen, D., A Sampler Designed for Nanoparticles and Respirable Particles with Direct Analysis Feature. J Nanopart Res 2018, 20, (209).

. Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B., Fiji: an open-source platform for biological-image analysis. Nature methods 2012, 9, (7), 676-682.

How to Cite
Tsai CS-J, Khattak J, Shin N, Rhine W, Gould G. Fumed Silica Particle Deagglomeration Associated with Instrument Techniques. Int J Occup Hyg. 10(3).
Original Article(s)